OKLAHOMA TRANSPORTATION
BY THE NUMBERS:

Meeting the State’s Need for Safe, Smooth and Efficient Mobility

MAY 2017

Founded in 1971, TRIP ® of Washington, DC, is a nonprofit organization that researches, evaluates and distributes economic and technical data on surface transportation issues. TRIP is sponsored by insurance companies, equipment manufacturers, distributors and suppliers; businesses involved in highway and transit engineering and construction; labor unions; and organizations concerned with efficient and safe surface transportation.
Ten Key Transportation Numbers in Oklahoma

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 billion</td>
<td>Driving on deficient roads costs Oklahoma motorists a total of $5 billion annually in the form of additional vehicle operating costs (VOC), congestion-related delays and traffic crashes.</td>
</tr>
<tr>
<td>Oklahoma City - $2,175</td>
<td>TRIP has calculated the cost to the average motorist in the state’s largest urban areas in the form of additional VOC, congestion-related delays and traffic crashes. Drivers in the state’s largest urban areas incur annual costs as a result of driving on deficient roads as follows: Oklahoma City - $2,175, Tulsa - $2,092.</td>
</tr>
<tr>
<td>$3,380</td>
<td>A total of 3,380 people were killed in Oklahoma traffic crashes from 2012 to 2016, an average of 676 fatalities annually. The number of traffic fatalities in Oklahoma increased by six percent in 2016 from 2015, increasing from 643 fatalities to 682.</td>
</tr>
<tr>
<td>6% Increase</td>
<td>Between 2004 and 2016, the number of structurally deficient, state-maintained bridges in Oklahoma decreased by 79 percent.</td>
</tr>
<tr>
<td>2.5X</td>
<td>The fatality rate on Oklahoma’s rural roads is nearly two and a half times greater than the fatality rate on all other roads in the state (2.21 fatalities per 100 million VMT vs. 0.91).</td>
</tr>
<tr>
<td>45%, 40%, 42%</td>
<td>Forty-five percent of Oklahoma’s major urban roads are in poor condition. Forty and 42 percent of major roads and highways in the Oklahoma City and Tulsa urban areas are in poor condition, respectively.</td>
</tr>
<tr>
<td>682 Million, 335 Million, 485 Million, 57 Million</td>
<td>Since 2010, the state legislature has cut or diverted $682 million for the state’s road, highway and bridge program, although the state legislature has allowed the Oklahoma Department of Transportation (ODOT) to issue $335 million in bonds to offset some of the cuts in funding for road, highway and bridge improvements to $347 million. Retiring the state’s $485 million in transportation bond debt costs $57 million annually.</td>
</tr>
<tr>
<td>1.5 Billion, 208 Million</td>
<td>Senate Bill 837, which is currently under consideration by the state legislature, would decrease road, highway and bridge funding in Oklahoma by $1.5 billion from fiscal year (FY) 2018 to FY 2025. A state legislature proposal to increase the state’s motor fuel tax would reduce the overall amount removed from the state’s road, highway and bridge program to $208 million between FY 2018 and FY 2025.</td>
</tr>
<tr>
<td>>12 80</td>
<td>Due to low cash flow as a result of previous funding cuts and the possibility of additional cuts during the current legislative session, ODOT has suspended the start of more than 12 projects and are preparing a plan to suspend 80 projects currently under construction.</td>
</tr>
<tr>
<td>Oklahoma City – 49 Hours, Tulsa – 44 hours</td>
<td>Mounting congestion robs drivers of time and fuel. Annual time wasted in congestion for drivers in the state’s largest urban areas is as follows: Oklahoma City – 49 hours, Tulsa – 44 hours.</td>
</tr>
</tbody>
</table>
Executive Summary

Nine years after the nation suffered a significant economic downturn, Oklahoma’s economy continues to rebound. The rate of economic growth in Oklahoma, which is greatly impacted by the reliability and condition of the state’s transportation system, has a significant impact on quality of life in the Sooner State.

An efficient, safe and well-maintained transportation system provides economic and social benefits by affording individuals access to employment, housing, healthcare, education, goods and services, recreation, entertainment, family, and social activities. It also provides businesses access to suppliers, markets and employees, all critical to a business’ level of productivity and ability to expand. Reduced accessibility and mobility - as a result of traffic congestion, a lack of adequate capacity, or deteriorated roads, highways, bridges and transit facilities - diminishes a region’s quality of life by reducing economic productivity and limiting opportunities for economic, health or social transactions and activities.

With an economy based largely on natural resource extraction, manufacturing and production, agriculture, and tourism, the quality of Oklahoma’s transportation system plays a vital role in the state’s economic growth and quality of life.

In this report, TRIP looks at the top transportation numbers in Oklahoma as the state addresses modernizing and maintaining its system of roads, highways, bridges and transit.

COST TO OKLAHOMA MOTORISTS OF DEFICIENT ROADS
An inadequate transportation system costs Oklahoma motorists a total of $5 billion every year in the form of additional vehicle operating costs (VOC), congestion-related delays and traffic crashes.

- Driving on rough roads costs Oklahoma motorists a total of $1.9 billion annually in extra vehicle operating costs. Costs include accelerated vehicle depreciation, additional repair costs, and increased fuel consumption and tire wear.

- Traffic crashes in which roadway design was likely a contributing factor cost Oklahoma motorists a total of $1 billion each year in the form of lost household and workplace productivity, insurance and other financial costs.

- Traffic congestion costs Oklahoma motorists a total of $2.1 billion each year in the form of lost time and wasted fuel.
• The chart below details the average cost per driver in the state’s largest urban areas and statewide.

<table>
<thead>
<tr>
<th>Urban Area</th>
<th>VOC</th>
<th>Safety</th>
<th>Congestion</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oklahoma City</td>
<td>$832</td>
<td>$233</td>
<td>$1,110</td>
<td>$2,175</td>
</tr>
<tr>
<td>Tulsa</td>
<td>$859</td>
<td>$249</td>
<td>$984</td>
<td>$2,092</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>$1.9 Billion</td>
<td>$1 Billion</td>
<td>$2.1 Billion</td>
<td>$5 Billion</td>
</tr>
</tbody>
</table>

STATE TRANSPORTATION FUNDING IN OKLAHOMA

Significant levels of state transportation funding have been reduced since 2010. Some of the state’s transportation funding cuts have been offset by the issuance of transportation bonds, but the repayment of the bonds over the next several years will reduce funds available for road, highway and bridge improvements. Legislation currently being considered by the state legislature would significantly reduce immediate and future transportation investment in the state, although a proposed revenue increase may offset the potential cuts.

• Since 2010, the state legislature has removed $682 million from the state’s road, highway and bridge program, although the state legislature has allowed the Oklahoma Department of Transportation to issue a total of $335 million in bonds to lower the reduction in road, highway and bridge improvement funding to $347 million.

• Retiring the state’s $485 million in outstanding transportation bond debt costs $57 million annually, which is paid with funding from ODOT’s construction program.

• Senate Bill 837, which is currently under consideration by the state legislature, would decrease road, highway and bridge funding in Oklahoma by $1.5 billion from fiscal year (FY) 2018 to FY 2025. A separate state legislature proposal to increase the state’s motor fuel tax and direct that revenue to ODOT would reduce the amount removed from the state’s road, highway and bridge program to $208 million between FY 2018 and FY 2025.

• Due to low cash flow as a result of previous funding cuts and the possibility of additional cuts during the current legislative session, ODOT has suspended the start of more than 12 projects and are preparing a plan to possibly suspend 80 projects currently under construction.

POPULATION, TRAVEL AND ECONOMIC TRENDS IN OKLAHOMA

The rate of population and economic growth in Oklahoma have resulted in increased demands on the state’s major roads and highways, leading to increased wear and tear on the transportation system.

• Oklahoma’s population reached approximately 3.9 million residents in 2016, a 14 percent increase since 2000. Oklahoma had approximately 2.6 million licensed drivers in 2015.
• Annual vehicle miles traveled (VMT) in Oklahoma increased by 13 percent from 2000 to 2016 –from 43.4 billion VMT in 2000 to 48.8 billion VMT in 2016.

• From 2000 to 2015, Oklahoma’s gross domestic product, a measure of the state’s economic output, increased by 45 percent, when adjusted for inflation. U.S. GDP increased 27 percent during this time.

• By 2030, vehicle travel in Oklahoma is projected to increase by another 15 percent.

OKLAHOMA ROAD CONDITIONS

A lack of adequate state and local funding has resulted in nearly three-fourths of major urban roads and highways in Oklahoma having pavement surfaces in poor or mediocre condition, providing a rough ride and costing motorists in the form of additional vehicle operating costs.

• The pavement data in this report, which is for all arterial and collector roads and highways, is provided by the Federal Highway Administration (FHWA), based on data submitted annually by the Oklahoma Department of Transportation (ODOT) on the condition of major state and locally maintained roads and highways.

• Pavement data for Interstate highways and other principal arterials is collected for all system mileage, whereas pavement data for minor arterial and all collector roads and highways is based on sampling portions of roadways as prescribed by FHWA to insure that the data collected is adequate to provide an accurate assessment of pavement conditions on these roads and highways.

• Forty-five percent of Oklahoma’s major locally and state-maintained urban roads and highways have pavements in poor condition and 29 percent are rated in mediocre condition. Twelve percent of major urban roads are in fair condition and the remaining 14 percent are rated in good condition.

• Overall, 26 percent of Oklahoma’s major locally and state-maintained roads and highways have pavements in poor condition and 27 percent are in mediocre condition. Eighteen percent of the state’s major roads are rated in fair condition and the remaining 30 percent are rated in good condition.

• Twenty-two percent of Oklahoma’s major locally and state-maintained rural roads and highways have pavements in poor condition and 26 percent are rated in mediocre condition. Nineteen percent of major rural roads are in fair condition and the remaining 33 percent are rated in good condition.

• The chart below details the share of pavement in poor, mediocre, fair and good condition in the state’s largest urban areas.
• Roads rated in mediocre to poor condition may show signs of deterioration, including rutting, cracks and potholes. In some cases, these roads can be resurfaced, but often are too deteriorated and must be reconstructed.

• Long-term repair costs increase significantly when road and bridge maintenance is deferred, as road and bridge deterioration accelerates later in the service life of a transportation facility and requires more costly repairs. A report on maintaining pavements found that every $1 of deferred maintenance on roads and bridges costs an additional $4 to $5 in needed future repairs.

• Driving on rough roads costs Oklahoma motorists a total of $1.9 billion annually in extra vehicle operating costs. Costs include accelerated vehicle depreciation, additional repair costs, and increased fuel consumption and tire wear.

OKLAHOMA BRIDGE CONDITIONS

The Oklahoma Department of Transportation (ODOT) has made significant progress in reducing the number of structurally deficient bridges in the state between 2004 and 2016.

• Between 2004 and 2016, the number of structurally deficient, state-maintained bridges in Oklahoma decreased by 79 percent from 1,168 to 251. All remaining structurally deficient bridges are included in ODOT’s Eight-year Construction Work Plan to be under construction by the end of the decade.

• Fifteen percent of Oklahoma’s locally and state-maintained bridges were structurally deficient in 2016, the eighth highest level among states. In 2004, 31 percent of Oklahoma’s locally and state-maintained bridges were structurally deficient, the highest share nationally.

• A bridge is structurally deficient if there is significant deterioration of the bridge deck, supports or other major components. Structurally deficient bridges are often posted for lower weight or closed to traffic, restricting or redirecting large vehicles, including commercial trucks and emergency services vehicles.

• The chart below details the share of state-maintained, locally maintained and all bridges in Oklahoma City, Tulsa and statewide which are structurally deficient.

<table>
<thead>
<tr>
<th>Urban Area</th>
<th>Locally Maintained Bridges Structurally Deficient</th>
<th>State-Maintained Bridges Structurally Deficient</th>
<th>Pct. All Bridges Structurally Deficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oklahoma City</td>
<td>7%</td>
<td>10%</td>
<td>9%</td>
</tr>
<tr>
<td>Tulsa</td>
<td>8%</td>
<td>12%</td>
<td>10%</td>
</tr>
</tbody>
</table>
HIGHWAY SAFETY AND FATALITY RATES IN OKLAHOMA

Improving safety features on Oklahoma’s roads and highways would likely result in a decrease in the state’s traffic fatalities and serious crashes. It is estimated that roadway features are likely a contributing factor in approximately one-third of all fatal and serious traffic crashes. Traffic fatalities in Oklahoma increased in 2016.

- A total of 3,380 people were killed in Oklahoma traffic crashes from 2012 to 2016, an average of 676 fatalities per year.

- The number of traffic fatalities in Oklahoma increased by six percent in 2016 from 2015, increasing from 643 fatalities to 682.

- Oklahoma’s overall traffic fatality rate of 1.35 fatalities per 100 million vehicle miles of travel in 2015 was significantly higher than the national average of 1.13.

- The fatality rate on Oklahoma’s non-interstate rural roads in 2015 was nearly two and a half times greater than on all other roads in the state (2.21 fatalities per 100 million vehicle miles of travel vs. 0.91).

- The chart below details the average number of people killed in traffic crashes from 2013 to 2015 in the state’s largest urban areas, as well as the cost per motorist of traffic crashes.

<table>
<thead>
<tr>
<th>Urban Area</th>
<th>Average Fatalities</th>
<th>Safety Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oklahoma City</td>
<td>77</td>
<td>$233</td>
</tr>
<tr>
<td>Tulsa</td>
<td>68</td>
<td>$249</td>
</tr>
</tbody>
</table>

- Traffic crashes in Oklahoma imposed a total of $3 billion in economic costs in 2015. TRIP estimates that traffic crashes in which roadway features were likely a contributing factor imposed $1 billion in economic costs in 2015.

- According to a 2015 National Highway Traffic Safety Administration (NHTSA) report, the economic costs of traffic crashes includes work and household productivity losses, property damage, medical costs, rehabilitation costs, legal and court costs, congestion costs and emergency services.

- Roadway features that impact safety include the number of lanes, lane widths, lighting, lane markings, rumble strips, shoulders, guard rails, other shielding devices, median barriers and intersection design. The cost of serious crashes includes lost productivity, lost earnings, medical costs and emergency services.

- Several factors are associated with vehicle crashes that result in fatalities, including driver behavior, vehicle characteristics and roadway features. TRIP estimates that roadway features are likely a contributing factor in approximately one-third of fatal traffic crashes.
• Where appropriate, highway improvements can reduce traffic fatalities and crashes while improving traffic flow to help relieve congestion. Such improvements include removing or shielding obstacles; adding or improving medians; improved lighting; adding rumble strips, wider lanes, wider and paved shoulders; upgrading roads from two lanes to four lanes; and better road markings and traffic signals.

• Investments in rural traffic safety have been found to result in significant reductions in serious traffic crashes. A 2012 report by the Texas Transportation Institute (TTI) found that improvements completed recently by the Texas Department of Transportation that widened lanes, improved shoulders and made other safety improvements on 1,159 miles of rural state roadways resulted in 133 fewer fatalities on these roads in the first three years after the improvements were completed (as compared to the three years prior). TTI estimates that the improvements on these roads are likely to save 880 lives over 20 years.

OKLAHOMA TRAFFIC CONGESTION
Increasing levels of traffic congestion cause significant delays in Oklahoma, particularly in its larger urban areas, choking commuting and commerce. Traffic congestion robs commuters of time and money and imposes increased costs on businesses, shippers and manufacturers, which are often passed along to the consumer.

• Based on Texas Transportation Institute (TTI) estimates, the value of lost time and wasted fuel in Oklahoma is approximately $2.1 billion per year.

• The chart below details the number of hours lost to congestion by the average driver in the state’s largest urban areas, as well as the annual cost of traffic congestion per driver in the form of lost time and wasted fuel.

<table>
<thead>
<tr>
<th>Urban Area</th>
<th>Congestion Cost</th>
<th>Hours Lost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oklahoma City</td>
<td>$1,110</td>
<td>49</td>
</tr>
<tr>
<td>Tulsa</td>
<td>$984</td>
<td>44</td>
</tr>
</tbody>
</table>

• Increasing levels of congestion add significant costs to consumers, transportation companies, manufacturers, distributors and wholesalers and can reduce the attractiveness of a location to a company when considering expansion or where to locate a new facility. Congestion costs can also increase overall operating costs for trucking and shipping companies, leading to revenue losses, lower pay for drivers and employees, and higher consumer costs.
TRANSPORTATION AND ECONOMIC GROWTH IN OKLAHOMA

The efficiency of Oklahoma’s transportation system, particularly its highways, is critical to the health of the state’s economy. Businesses rely on an efficient and dependable transportation system to move products and services. A key component in business efficiency and success is the level and ease of access to customers, markets, materials and workers.

- Annually, $348 billion in goods are shipped to and from sites in Oklahoma, mostly by truck.

- Eighty-three percent of the goods shipped annually to and from sites in Oklahoma are carried by trucks and another eight percent are carried by courier services or multiple mode deliveries, which include trucking.

- Increasingly, companies are looking at the quality of a region’s transportation system when deciding where to re-locate or expand. Regions with congested or poorly maintained roads may see businesses relocate to areas with a smoother, more efficient and more modern transportation system.

- Highway accessibility was ranked the number two site selection factor behind only the availability of skilled labor in a 2015 survey of corporate executives by Area Development Magazine.

- The Federal Highway Administration estimates that each dollar spent on road, highway and bridge improvements results in an average benefit of $5.20 in the form of reduced vehicle maintenance costs, reduced delays, reduced fuel consumption, improved safety, reduced road and bridge maintenance costs and reduced emissions as a result of improved traffic flow.

FEDERAL TRANSPORTATION FUNDING IN OKLAHOMA

The current five-year federal surface transportation program includes modest funding increases and provides states with greater funding certainty, but falls far short of providing the level of funding needed to meet the nation’s highway and transit needs. The bill does not include a long-term and sustainable revenue source.

- Signed into law in December 2015, the Fixing America’s Surface Transportation Act (FAST Act), provides modest increases in federal highway and transit spending, allows states greater long-term funding certainty and streamlines the federal project approval process. But the FAST Act does not provide adequate funding to meet the nation’s need for highway and transit improvements and does not include a long-term and sustainable funding source.

- The five-year, $305 billion FAST Act will provide a boost of approximately 15 percent in national highway funding and 18 percent in national transit funding over the duration of the program, which expires in 2020.
In addition to federal motor fuel tax revenues, the FAST Act will also be funded by $70 billion in U.S. general funds, which will rely on offsets from several unrelated federal programs including the Strategic Petroleum Reserve, the Federal Reserve and U.S. Customs.

According to the 2015 Status of the Nation’s Highways, Bridges and Transit: Conditions and Performance report submitted by the United States Department of Transportation (USDOT) to Congress, the nation faces an $836 billion backlog in needed repairs and improvements to the nation’s roads, highways and bridges.

The USDOT report found that the nation’s current $105 billion investment in roads, highways and bridges by all levels of government should be increased by 35 percent to $142.5 billion annually to improve the conditions of roads, highways and bridges, relieve traffic congestion and improve traffic safety.

Sources of information for this report include the Federal Highway Administration (FHWA), the Oklahoma Department of Transportation (ODOT), the American Association of State Highway and Transportation Officials (AASHTO), the Bureau of Transportation Statistics (BTS), the U.S. Census Bureau, the Texas Transportation Institute (TTI) and the National Highway Traffic Safety Administration (NHTSA).
Introduction

Oklahoma’s roads, highways and bridges form vital transportation links for the state’s residents, visitors and businesses, providing daily access to homes, jobs, shopping, natural resources and recreation. Modernizing Oklahoma’s transportation system is critical to quality of life and economic competitiveness in the Sooner State.

Supporting quality of life and a robust economy in Oklahoma requires that the state provide a safe, efficient and well-maintained transportation system. Inadequate transportation investment, which will result in deteriorated transportation facilities and diminished access, will negatively affect economic competitiveness and quality of life in Oklahoma.

To accommodate population and economic growth, maintain its level of economic competitiveness and achieve further economic growth, Oklahoma will need to maintain and modernize its roads, highways and bridges by improving the physical condition of its transportation network and enhancing the system’s ability to provide efficient, reliable and safe mobility for residents, visitors and businesses. Making needed improvements to Oklahoma’s roads, highways, bridges and transit systems could also provide a significant boost to the state’s economy by creating jobs in the short term and stimulating long-term economic growth as a result of enhanced mobility and access.

This report examines the condition, use and safety of Oklahoma’s roads, highways and bridges, funding needs, and the future mobility needs of the state. Sources of information for this report include the Federal Highway Administration (FHWA), the Oklahoma Department of Transportation (ODOT), the American Association of State Highway and Transportation Officials (AASHTO), the Bureau of Transportation Statistics (BTS), the U.S. Census Bureau, the
Texas Transportation Institute (TTI), and the National Highway Traffic Safety Administration (NHTSA).

Population, Travel and Economic Trends in Oklahoma

Oklahoma motorists and businesses require a high level of personal and commercial mobility. To foster quality of life and spur continued economic growth in Oklahoma, it will be critical that the state provide a safe and modern transportation system that can accommodate future growth in population, tourism, business, recreation and vehicle travel.

Oklahoma’s population grew to approximately 3.9 million residents in 2016, a 14 percent increase since 2000.\(^1\) Oklahoma had approximately 2.6 million licensed drivers in 2015.\(^2\) From 2000 to 2015, Oklahoma’s gross domestic product (GDP), a measure of the state’s economic output, increased by 45 percent, when adjusted for inflation.\(^3\) U.S. GDP increased 27 percent during this period.\(^4\)

From 2000 to 2016, annual vehicle miles of travel (VMT) in Oklahoma increased by 13 percent, from 43.4 billion miles traveled annually to 48.8 billion miles traveled annually.\(^5\)

Based on population and other lifestyle trends, TRIP estimates that travel on Oklahoma’s roads and highways will increase by another 15 percent by 2030.\(^6\)
Condition of Oklahoma’s Roads

The life cycle of Oklahoma’s roads is greatly affected by the state and local governments’ ability to perform timely maintenance and upgrades to ensure that road and highway surfaces last as long as possible.

The pavement data in this report, which is for all arterial and collector roads and highways, is provided by the Federal Highway Administration (FHWA), based on data submitted annually by the Oklahoma Department of Transportation (ODOT) on the condition of major state and locally maintained roads and highways. Pavement data for Interstate highways and other principal arterials is collected for all system mileage, whereas pavement data for minor arterial and all collector roads and highways is based on sampling portions of roadways as prescribed by FHWA to insure that the data collected is adequate to provide an accurate assessment of pavement conditions on these roads and highways.

Statewide, 26 percent of Oklahoma’s major locally and state-maintained roads are in poor condition and 27 percent are in mediocre condition. Eighteen percent are in fair condition and the remaining 30 percent are in good condition.7

Nearly three quarters of Oklahoma’s major urban roads are in poor or mediocre condition. Forty-five percent of Oklahoma’s major locally and state-maintained urban roads and highways have pavements rated in poor condition and 29 percent are in mediocre condition.8 Twelve percent of Oklahoma’s major urban roads are rated in fair condition and the remaining 14 percent are rated in good condition.9

Nearly half of Oklahoma’s major rural roads are in poor or mediocre condition. Twenty-two percent of Oklahoma’s major locally and state-maintained rural roads and highways have
pavements rated in poor condition and 26 percent are in mediocre condition. Nineteen percent of Oklahoma’s major rural roads are rated in fair condition and the remaining 33 percent are rated in good condition.

The chart below details pavement conditions on major urban roads in the state’s largest urban areas.

Chart 1. Pavement conditions on major roads in the state’s largest urban areas.

<table>
<thead>
<tr>
<th>Urban Area</th>
<th>Poor</th>
<th>Mediocre</th>
<th>Fair</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oklahoma City</td>
<td>40%</td>
<td>39%</td>
<td>9%</td>
<td>12%</td>
</tr>
<tr>
<td>Tulsa</td>
<td>42%</td>
<td>40%</td>
<td>10%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Source: TRIP analysis of Federal Highway Administration data.

Pavement failure is caused by a combination of traffic, moisture and climate. Moisture often works its way into road surfaces and the materials that form the road’s foundation. Road surfaces at intersections are even more prone to deterioration because the slow-moving or standing loads occurring at these sites subject the pavement to higher levels of stress. It is critical that roads are fixed before they require major repairs because reconstructing roads costs approximately four times more than resurfacing them. As roads and highways continue to age, they will reach a point of deterioration where routine paving and maintenance will not be adequate to keep pavement surfaces in good condition and costly reconstruction of the roadway and its underlying surfaces will become necessary.

Long-term repair costs increase significantly when road and bridge maintenance is deferred, as road and bridge deterioration accelerates later in the service life of a transportation facility and requires more costly repairs. A report on maintaining pavements found that every $1 of deferred maintenance on roads and bridges costs an additional $4 to $5 in needed future repairs.
The Costs to Motorists of Roads in Inadequate Condition

TRIP has calculated the additional cost to motorists of driving on roads in poor, mediocre or fair condition. When roads are in poor, mediocre or fair condition – which may include potholes, rutting or rough surfaces – the cost to operate and maintain a vehicle increases. These additional vehicle operating costs (VOC) include accelerated vehicle depreciation, additional vehicle repair costs, increased fuel consumption and increased tire wear. TRIP estimates that additional VOC borne by Oklahoma motorists as a result of deteriorated road conditions is $1.9 billion annually, or $718 per driver. The chart below details additional VOC per motorist in the state’s largest urban areas.

Chart 2. Vehicle operating costs per motorist as a result of driving on deteriorated roads.

<table>
<thead>
<tr>
<th>Urban Area</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oklahoma City</td>
<td>$832</td>
</tr>
<tr>
<td>Tulsa</td>
<td>$859</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>$1.9 Billion</td>
</tr>
</tbody>
</table>

Source: TRIP estimates.

Additional vehicle operating costs have been calculated in the Highway Development and Management Model (HDM), which is recognized by the U.S. Department of Transportation and more than 100 other countries as the definitive analysis of the impact of road conditions on vehicle operating costs. The HDM report is based on numerous studies that have measured the impact of various factors, including road conditions, on vehicle operating costs.

The HDM study found that road deterioration increases ownership, repair, fuel and tire costs. The report found that deteriorated roads accelerate the pace of depreciation of vehicles and
the need for repairs because the stress on the vehicle increases in proportion to the level of roughness of the pavement surface. Similarly, tire wear and fuel consumption increase as roads deteriorate since there is less efficient transfer of power to the drive train and additional friction between the road and the tires.

TRIP’s additional VOC estimate is based on taking the average number of miles driven annually by a motorist, calculating current VOC based on AAA’s 2016 VOC and then using the HDM model to estimate the additional VOC paid by drivers as a result of substandard roads. Additional research on the impact of road conditions on fuel consumption by the Texas Transportation Institute (TTI) is also factored in to TRIP’s vehicle operating cost methodology.

Bridge Conditions in Oklahoma

Oklahoma’s bridges form key links in the state’s highway system, providing communities and individuals access to employment, schools, shopping and medical facilities, and facilitating commerce and access for emergency vehicles.

The Oklahoma Department of Transportation (ODOT) has made significant progress in reducing the number of structurally deficient bridges in the state between 2004 and 2016. Between 2004 and 2016, the number of structurally deficient, state-maintained bridges in Oklahoma decreased by 79 percent from 1,168 to 251. All remaining structurally deficient bridges are included in ODOT’s Eight-year Construction Work Plan to be under construction by the end of the decade.

Fifteen percent of Oklahoma’s locally and state-maintained bridges were structurally deficient in 2016, the eighth highest level among states. This includes all bridges that are 20
feet or more in length. In 2004, 31 percent of Oklahoma’s locally and state-maintained bridges were structurally deficient, the highest share nationally.20

A bridge is structurally deficient if there is significant deterioration of the bridge deck, supports or other major components. Bridges that are structurally deficient may be posted for lower weight limits or closed if their condition warrants such action. Deteriorated bridges can have a significant impact on daily life. Restrictions on vehicle weight may cause many vehicles – especially emergency vehicles, commercial trucks, school buses and farm equipment – to use alternate routes to avoid posted bridges. Redirected trips also lengthen travel time, waste fuel and reduce the efficiency of the local economy.

The chart below details the share of state-maintained, locally maintained and all bridges in Oklahoma City, Tulsa and statewide which are structurally deficient.

Chart 3. Share of structurally deficient bridges in Oklahoma’s largest urban areas and statewide.

<table>
<thead>
<tr>
<th>Urban Area</th>
<th>Locally Maintained Bridges Structurally Deficient</th>
<th>State-Maintained Bridges Structurally Deficient</th>
<th>Pct. All Bridges Structurally Deficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oklahoma City</td>
<td>7%</td>
<td>10%</td>
<td>9%</td>
</tr>
<tr>
<td>Tulsa</td>
<td>8%</td>
<td>12%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Source: TRIP analysis of Federal Highway Administration National Bridge Inventory.

The service life of bridges can be extended by performing routine maintenance such as resurfacing decks, painting surfaces, insuring that a facility has good drainage and replacing deteriorating components. But, most bridges will eventually require more costly reconstruction or major rehabilitation to remain operable.
Traffic Safety in Oklahoma

A total of 3,380 people were killed in Oklahoma traffic crashes from 2012 to 2016, an average of 676 fatalities per year.21 The number of traffic fatalities in Oklahoma increased by six percent in 2016 from 2015, increasing from 643 fatalities to 682.22

Chart 4. Traffic Fatalities in Oklahoma from 2012 – 2016.

<table>
<thead>
<tr>
<th>Year</th>
<th>Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>708</td>
</tr>
<tr>
<td>2013</td>
<td>678</td>
</tr>
<tr>
<td>2014</td>
<td>669</td>
</tr>
<tr>
<td>2015</td>
<td>643</td>
</tr>
<tr>
<td>2016</td>
<td>682</td>
</tr>
<tr>
<td>Total</td>
<td>3,380</td>
</tr>
</tbody>
</table>

Three major factors are associated with fatal vehicle crashes: driver behavior, vehicle characteristics and roadway features. It is estimated that roadway features are likely a contributing factor in approximately one-third of fatal traffic crashes. Roadway features that impact safety include the number of lanes, lane widths, lighting, lane markings, rumble strips, shoulders, guard rails, other shielding devices, median barriers and intersection design.

Oklahoma’s overall traffic fatality rate of 1.35 fatalities per 100 million vehicle miles of travel in 2015 is significantly higher than the national average of 1.13.23 The traffic fatality rate on the state’s rural roads is disproportionately high. The fatality rate on Oklahoma’s non-interstate rural roads is nearly two-and-a-half times higher than on all other roads in the state (2.21 fatalities per 100 million vehicle miles of travel vs. 0.91).24

The chart below details the number of people killed in traffic crashes in the state’s largest urban areas between 2013 and 2015, as well as the cost of traffic crashes per driver.
Traffic crashes in Oklahoma imposed a total of $3 billion in economic costs in 2015.25 TRIP estimates that traffic crashes in which roadway features were likely a contributing factor imposed $1 billion in economic costs in 2015.26

According to a 2015 National Highway Traffic Safety Administration (NHTSA) report, the economic costs of traffic crashes includes work and household productivity losses, property damage, medical costs, rehabilitation costs, legal and court costs, congestion costs and emergency services.27

Improving safety on Oklahoma’s roadways can be achieved through further improvements in vehicle safety; improvements in driver, pedestrian, and bicyclist behavior; and, a variety of improvements in roadway safety features.

The severity of serious traffic crashes could be reduced through roadway improvements, where appropriate, such as adding turn lanes, removing or shielding obstacles, adding or improving medians, widening lanes, widening and paving shoulders, improving intersection layout, and providing better road markings and upgrading or installing traffic signals. Roads with poor geometry, with insufficient clear distances, without turn lanes, having inadequate shoulders for the posted speed limits, or poorly laid out intersections or interchanges, pose greater risks to motorists, pedestrians and bicyclists.

Investments in rural traffic safety have been found to result in significant reductions in serious traffic crashes. A \textit{2012 report by TTI} found that improvements completed recently by

<table>
<thead>
<tr>
<th>Urban Area</th>
<th>Average Fatalities</th>
<th>Safety Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oklahoma City</td>
<td>77</td>
<td>$233</td>
</tr>
<tr>
<td>Tulsa</td>
<td>68</td>
<td>$249</td>
</tr>
</tbody>
</table>

Source: TRIP analysis.

Chart 5. Average fatalities between 2013 and 2015 and crash cost per driver.
TxDOT that widened lanes, improved shoulders and made other safety improvements on 1,159 miles of rural state roadways resulted in 133 fewer fatalities on these roads in the first three years after the improvements were completed (as compared to the three years prior). TTI estimates that the improvements on these roads are likely to save 880 lives over 20 years.

Traffic Congestion in Oklahoma

Increasing levels of traffic congestion cause significant delays in Oklahoma, particularly in its larger urban areas, choking commuting and commerce. Traffic congestion robs commuters of time and money and imposes increased costs on businesses, shippers and manufacturers, which are often passed along to the consumer.

Based on TTI methodology, TRIP estimates the value of lost time and wasted fuel in Oklahoma is approximately $2.1 billion per year. The chart below details the number of hours lost annually for each driver in the state’s largest urban areas, as well as the per-driver cost of lost time and wasted fuel due to congestion.

Chart 6. Annual hours lost to congestion and congestion costs per driver.

<table>
<thead>
<tr>
<th>Urban Area</th>
<th>Congestion Cost</th>
<th>Hours Lost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oklahoma City</td>
<td>$1,110</td>
<td>49</td>
</tr>
<tr>
<td>Tulsa</td>
<td>$984</td>
<td>44</td>
</tr>
</tbody>
</table>

Source: Texas Transportation Institute Urban Mobility Report.

Increasing levels of congestion add significant costs to consumers, transportation companies, manufacturers, distributors and wholesalers. Increased levels of congestion can reduce the attractiveness of a location to a company when considering expansion or where to locate a new facility. Congestion costs can also increase overall operating costs for trucking and
Shipping companies, leading to revenue losses, lower pay for employees, and higher consumer costs.

Transportation Funding

Investment in Oklahoma’s roads, highways and bridges is funded by local, state and federal governments. A lack of sufficient funding at all levels will make it difficult to adequately maintain and improve the state’s existing transportation system.

Significant levels of state transportation funding have been reduced since 2010. Some of the state’s transportation funding cuts have been offset by the issuance of transportation bonds, but the repayment of the bonds over the next several years will reduce funds available for road, highway and bridge improvements. Legislation currently being considered by the state legislature would significantly reduce immediate and future transportation investment in the state, although a proposed revenue increase may offset the potential cuts.

Since 2010, the state legislature has removed $682 million for the state’s road, highway and bridge program, although the state legislature has allowed the Oklahoma Department of Transportation to issue a total of $335 million in bonds to lower the reduction in road, highway and bridge improvement funding to $347 million.\(^{30}\) Retiring the state’s $485 million in outstanding transportation bond debt costs $57 million annually, which is paid with funding from ODOT’s construction program.\(^{31}\)

Senate Bill 837, which is currently under consideration by the state legislature, would decrease road, highway and bridge funding in Oklahoma by $1.5 billion from fiscal year (FY) 2018 to FY 2025.\(^{32}\) A separate state legislature proposal to increase the state’s motor fuel tax
and direct that revenue to ODOT would reduce the amount removed from the state’s road, highway and bridge program to $208 million between FY 2018 and FY 2025.33

Due to low cash flow as a result of previous funding cuts and the possibility of additional cuts during the current legislative session, ODOT has suspended the start of more than 12 projects and are preparing a plan to possibly suspend 80 projects currently under construction.34

The federal government is a critical source of funding for Oklahoma’s roads, highways, bridges and transit systems and provides a significant return in road and bridge funding based on the revenue generated in the state by the federal motor fuel tax.

Most federal funds for highway and transit improvements in Oklahoma are provided by federal highway user fees, largely an 18.4 cents-per-gallon tax on gasoline and a 24.4 cents-per-gallon tax on diesel fuel. Since 2008 revenue into the federal Highway Trust Fund has been inadequate to support legislatively set funding levels so Congress has transferred approximately $53 billion in general funds and an additional $2 billion from a related trust fund into the federal Highway Trust Fund.35

Signed into law in December 2015, the Fixing America’s Surface Transportation Act (FAST Act), provides modest increases in federal highway and transit spending. The five-year bill also provides states with greater funding certainty and streamlines the federal project approval process. But, the FAST Act does not provide adequate funding to meet the nation’s need for highway and transit improvements and does not include a long-term and sustainable funding source.

The five-year, $305 billion FAST Act will provide a boost of approximately 15 percent in highway funding and 18 percent in transit funding over the duration of the program, which expires in 2020.36
According to the 2015 Status of the Nation’s Highways, Bridges and Transit: Conditions and Performance report submitted by the United States Department of Transportation (USDOT) to Congress, the nation faces an $836 billion backlog in needed repairs and improvements to the nation’s roads, highways and bridges.37

The USDOT report found that the nation’s current $105 billion investment in roads, highways and bridges by all levels of government should be increased by 35 percent to $142.5 billion annually to improve the conditions of roads, highways and bridges, relieve traffic congestion and improve traffic safety.

Importance of Transportation to Economic Growth

Today’s culture of business demands that an area have well-maintained and efficient roads, highways and bridges if it is to remain economically competitive. Global communications and the impact of free trade in North America and elsewhere have resulted in a significant increase in freight movement, making the quality of a region’s transportation system a key component in a business’s ability to compete locally, nationally and internationally.

Businesses have responded to improved communications and the need to cut costs with a variety of innovations including just-in-time delivery, increased small package delivery, demand-side inventory management and e-commerce. The result of these changes has been a significant improvement in logistics efficiency as firms move from a push-style distribution system, which relies on large-scale warehousing of materials, to a pull-style distribution system, which relies on smaller, more strategic movement of goods. These improvements have made mobile inventories the norm, resulting in the nation’s trucks literally becoming rolling warehouses.
Highways are vitally important to continued economic development in Oklahoma. As the economy expands, creating more jobs and increasing consumer confidence, the demand for consumer and business products grows. In turn, manufacturers ship greater quantities of goods to market to meet this demand, a process that adds to truck traffic on the state’s highways and major arterial roads.

Every year, $348 billion in goods are shipped to and from sites in Oklahoma, mostly by trucks.\(^\text{38}\) Eighty-three percent of the goods shipped annually to and from sites in Oklahoma are carried by trucks and another eight percent are carried by courier services or multiple-mode deliveries, which include trucking.\(^\text{39}\)

The cost of road and bridge improvements are more than offset by the reduction of user costs associated with driving on rough roads, the improvement in business productivity, the reduction in delays and the improvement in traffic safety. The Federal Highway Administration estimates that each dollar spent on road, highway and bridge improvements results in an average benefit of $5.20 in the form of reduced vehicle maintenance costs, reduced delays, reduced fuel consumption, improved safety, reduced road and bridge maintenance costs and reduced emissions as a result of improved traffic flow.\(^\text{40}\)

Local, regional and state economic performance is improved when a region’s surface transportation system is expanded or repaired. This improvement comes as a result of the initial job creation and increased employment created over the long-term because of improved access, reduced transport costs and improved safety.

Increasingly, companies are looking at the quality of a region’s transportation system when deciding where to re-locate or expand. Regions with congested or poorly maintained roads may see businesses relocate to areas with a smoother, more efficient and more modern transportation system. Highway accessibility was ranked the number two site selection factor
behind only the availability of skilled labor in a 2015 survey of corporate executives by Area Development Magazine. 41

Conclusion

As Oklahoma works to build and enhance a thriving, growing and dynamic state, it will be critical that it is able to address the state’s most significant transportation issues by providing a 21st century network of roads, highways, bridges and transit that can accommodate the mobility demands of a modern society.

Oklahoma will need to modernize its surface transportation system by improving the physical condition of its transportation network and enhancing the system’s ability to provide efficient, safe and reliable mobility for residents, visitors and businesses. Making needed improvements to the state’s roads, highways, bridges and transit systems could provide a significant boost to the economy by creating jobs in the short term and stimulating long-term economic growth as a result of enhanced mobility and access.

While the modest funding increase provided by the FAST Act will be helpful, numerous projects to improve the condition and expand the capacity of Oklahoma’s roads, highways, bridges and transit systems will not be able to proceed without a substantial boost in state or local transportation funding. If Oklahoma is unable to complete needed transportation projects it will hamper the state’s ability to improve the condition and efficiency of its transportation system or enhance economic development opportunities and quality of life.

###

24
Endnotes

1. U.S. Census Bureau (2016).
3. TRIP analysis of Bureau of Economic Analysis data.
4. Ibid.
6. TRIP calculation based on U.S. Census and Federal Highway Administration data.
8. Ibid.
9. Ibid.
10. Ibid.
11. Ibid.
12. Ibid.
13. Selecting a Preventative Maintenance Treatment for Flexible Pavements. R. Hicks, J. Moulthrop. Transportation Research Board. 1999. Figure 1.
15. TRIP calculation.
24. Ibid.
26. Ibid.
29. Ibid.
31. Ibid.
32. Ibid.
33. Ibid.
34. Ibid.
39 Ibid.
40 FHWA estimate based on its analysis of 2006 data. For more information on FHWA’s cost-benefit analysis of highway investment, see the 2008 Status of the Nation's Highways, Bridges, and Transit: Conditions and Performance.